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On the basis of the Heisenberg equation of motion and Linderberg-Seamans 
approximations useful formulas for/3-resonance integrals in the NDO-like 
semiempirical methods have been derived. The case of s, p- electron elements 
has been investigated. The possibility of inclusion of Rydberg and/or inner 
orbitals in the basis set of the valence orbitals has been taken into consider- 
ation. The results of the test INDOL/R method calculations of vertical 
transition energies for H2 and H20 molecules has been presented. 
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1. Introduction 

Investigation of the Rydberg states in molecules is an important step to better 
understanding and interpretation of the electronic spectra [1-3], as well as 
photochemistry [2, 4] of various molecules. At present, calculations of the elec- 
tronic spectra (taking into consideration the Rydberg states) have been performed 
in an ab initio SCF CI scheme by adding appropriate diffuse atomic orbitals 
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(Rydberg orbitals) to the usual basis set. These calculations are very time- 
consuming, and therefore they are restricted to rather small molecules. The 
various aspects of these calculations have been recently described by a few 
workers [4-8]. 

Usually, in the approximate NDO-type methods a minimum basis set of valence 
shell atomic orbitals (AO) has been used, which could not account for electronic 
transition involving a change in principal quantum number (Rydberg transition). 
The use of extended basis set in semiempirical methods has received little 
attention. 

Kato et al. [9] and Watson et al. [10] included Rydberg orbitals (RO) in Extended 
Hiickel method in a study of molecular properties of some molecules in the 
ground state [9], as well as in the calculations of valence and Rydberg transitions 
in mono-olefinic hydrocarbons [10]. In a few papers Rydberg orbitals have been 
included in the studies of the electronic spectra of indole (PPP approximations) 
[11] and in the CNDO calculations of the ground state properties of tiophene 
[12]. 

In 1971, Salahub and Sandorfy [13, 14], in a systematic study, have extended 
the CNDO method by including Rydberg orbitals in the basis set and performed 
calculations (mainly electronic spectra) on the first row atom molecules in which 
the heavy atom and hydrogen atom basis sets were augmented by 3s, 3p, and 
2s, 2p Slater type atomic orbitals, respectively. 

Recently, Hague [15] and Singh and Prasad [16] also have used a similar approach 
(and have extended it to INDO scheme) in the studies of Rydberg electronic 
transitions in various simple molecular systems. 

It seems, however, that Robin's comment: " . . .  there seems outwardly to be 
good agreement with experiment, but closer inspection shows that in many cases, 
the theoretical valence shell excitations have been assigned to experimental 
Rydberg states . . . "  [1, I p. 49] can be applied to all above mentioned semiem- 
pirical calculations [10, 13-16] of Rydberg electronic transitions. Nevertheless, 
it appears, that semiempirical methods (with basis set including RO) can be 
useful technique for studying Rydberg states, when appropriate parametrization 
will be adopted. These methods may be fruitful, especially for larger molecules. 

The most important point in every semiempirical scheme is the approximation 
of the Hij.(/30-) one-electron, two-centre resonance integrals. Theoretical relations 
for the resonance integrals between s, p-electron elements have been derived 
by Linderberg and Seamans [17] using the Heisenberg equation of motion and 
the second quantization formalism. Application of their formulas to the calcula- 
tions of the resonance integrals in the all-valence INDO-type method reproduces 
fairly well both ground and excited state properties of a wide range of the tested 
molecules and molecular complexes (see references cited in [18]). Recently, we 
extended Linderberg-Seamans formalism to d-orbitals [18]. 

The original Linderberg-Seamans formulas apply to the case when an atom 
possesses only one s type and one p type orbital. Therefore, in the present paper 



Formulas for Resonance Integrals 307 

we derived theoretical relations for resonance integrals for the case of the atom 
(s)  which possess an arbitrary number of both s and p type Slater atomic orbitals. 

2. Assumptions 

The detailed assumptions made in the derivation of theoretical formulas for 
resonance integrals are presented in the Linderberg-Seamans paper [17] and 
only the most important ones will be briefly given here. 

We started from the equation of motion 

p = - i [ r ,  H ]  (1) 

(in atomic units, which will be used throughout the paper), where p, r and H 
denote linear momentum, position and Hamiltonian operators, respectively. 
Assuming that 

(i) Hamiltonian of electrons is the sum of one- and two-electron parts H = h +g,  
and 

(ii) the position operator  r commutes with the two-electron part (g) of H, Eq. 
(1) can be rewritten in matrix form as 

- i V  = p  = - i ( r h  - h r ) .  (2) 

Another  important  assumption concerns position operator  approximated by the 
equation 

r ~  = (IXAIrIvB) = ~ A B [ 8 ~ R A  + (txAlr --!~AIVA) ] (3) 

where ~z, u are atomic orbitals centered on A and B sites, respectively, and R A  

is the position of atom A. The second term on right hand side is referred to as 
the atomic transition moment  integral. 

Let us now consider a diatomic molecule A - B ( R A B  = R ) ,  in which both the 
atoms possess an arbitrary number of s and p type orbitals. The use of elementary 
symmetry considerations and introduced approximations enabled us to derive 
from Eq. (2) the following matrix relations between the gradient (V) parameters 
and two center 13 integrals 

v ~ = _ R i 3  ~ + ~;~13 ~ - f f ~ f r  

V ~ = - R  f ~  + ~AlJP . . . . . . . .  - -P  p.uP 

V ,~,~ = _ R ~  "~ 

V s ~  5p ~'r~'r s t  sp 
= ~ A ~  - - 6  g B  

vo-s = _R~O-~ +~.~,ff, _~o-o- ~s 

V~  = ~ , ~ s s _ ~  ~ 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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V ~" = ~[3 ~ (11) 

V ~" = -[3~s p.~. (12) 

When both the atoms have only one s and one p orbital the matrix equations 
reduce to Linderberg-Seamans ones [17]. 

Matrices V, ~K and [3 are defined in the same way and, for example 

/ v i l , j  I V/1,J 2 . . .  vil"ira I 

\ Vl;~,Jl Vi;,J2 . . .  VJ~,Jm / 

where m and n denotes number  of " / "  and " i "  type atomic orbitals, respectively. 

Generally, the matrices V, IrK and/3 are rectangular. The/xK symbol denotes 
the atomic transition momen t  integral defined and calculated as previously [18]. 

Due  to the propert ies of V matrix elements [17-19] the following relationships 
between the gradient matrices can be found 

V "  = V  "~ = V  ~= 

V s,~ = (R Vs=) , 

v ~s = ( R  V , ,~ )  , 

V ,~,~ = R-I(R2V==),  

(13) 

(14a) 

(14b) 

(15) 

where prime denotes a first derivative, (X) '  = d X / d R ,  and R is the internuclear 
distance. 

3. Formulas for fl-integrals 

In this section we present general formulas for /3  integrals in A - B  molecule, 
taking into consideration several cases depending on basis set assumed on atoms 
A and B. 

Let us consider now a general case when an atom, say A possesses n A  atomic 
" s "  orbitals and mA " p "  type ones. For example,  in the case of a heavy atom 
(say carbon) with valence and Rydberg orbitals, the basis set contains 2s, 3s and 
2p, 3p orbitals, so that nA----2 and mA = 2. In the case of hydrogen a tom the 
basis set can be ls,  2s and 2p orbitals and thus n A  = 2 ,  m A  = 1, etc. The 
Linderberg-Seamans formulas were restricted to rtA = m A  = 1 for heavy atoms 
and to n A  = 1,  m A  ---- 0 for hydrogen atom. 

When nA = mA, we denote this case as symmetric (S)~A is then square, otherwise 
as unsymmetric (U). Thus, depending on the basis set used on atoms A and B, 
three cases will be considered. 

(i) Case I: A ( S )  - B ( S )  i.e. both atoms form square matrices Ix, nA ---- mA, nB= roB. 
This case includes also subcases when n A  = n B  and when n A  ~ riB. 
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Starting from Eqs. (6), (11), (12) and relation (13) we get 

13 ~ = R- l ( s  ~ ) '  (16) 

[~so- = _ ( i j t~s)- l($ ~r~-), (17)  

W' = (s'%'(~r -1. (18) 

Substituting Eq. (15) by (5) and employing relation (13) we see that 

13 ~ = (s==) ". (19) 

Finally, 13 ~s matrix can be obtained from Eq. (14) 

~,s = _ (ix~)-ls ~=(~p)-l.  (20) 

In these equations S == denotes ~r-Tr overlap integrals matrix whereas prime 
and double prime denote first and second derivative (S==) '=  dS/dR, (S==) "=  
d2S/dR 2, respectively. The general expression for the overlap integral derivative 
is given in [18]. 

Practically, the matrices IXr can be always inverted except the cases when 

(a) basis set is linearly dependent, and 

(b) accidentally when the Slater orbital exponent ~ for the orbital with a higher 
principal quantum number is greater than that for the orbital with a smaller 
quantum number, i.e. when, for example ~C3s > ~:2s etc. Actually, the latter case 
is never fulfilled. 

(ii) Case II: A(U)-B(S) i.e. ~A and ~B are rectangular and square matrices, 
respectively. Hence, IXA matrix may not be inverted and therefore/3 ==,/3 =~ and 
/3~ integrals can be calculated as in the case (i) i.e. from Eqs. (16), (19) and 
(18), respectively, but remaining integrals should be calculated from another 
formula. Namely, from Eq. (14) we have 

13 ~ = ( [3~) '~ .  (21) 

Substituting the result to Eq. (7) and integrating over R we obtain 

+~A(S ) ](IxB) (22) 

and utilizing Eq. (21) we have 

13~ = (S~'~ + ~(S '~") ' . )  ' . (23) 

(iii) Case III: A(U)-B(U) i.e. both ~A and IJm are rectangular matrices, and 
the inverted matrices (lUrK) -~ may not exist. Thus 13 '~', 13 ~ can be calculated as 
in the cases (i) and (ii), 13 s~ as in the case (ii) (see Eq. 23). The expression for 
13 ~" may be derived in the way similar to that employed in the derivation of 13 ~ 
in the case (ii). It reads 

~- -] . ( 2 4 )  
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The [3 ss integral matrix cannot be expressed solely in terms of S ~ ,  S ~" and S =s 
and therefore Eq. (4) must be used 

/ Sp~o's ~-~str sp .  t ~ / Sp[ l~Tr~t  pS\ t 

[3 ss "= R - e ( s s s ) '  + ~ . ( 2 5 )  

In the derivation of this formula, Eq. (23) and (24) have been used. 

When both the atoms possess either only s or p(rr) type orbitals, then 

13 "~ = R - l(S~s)'  (261 

and 

IV "~ = R -1 (S'~=) ', (26) 

respectively. 

The calculation of the second derivative of overlap intergrals is troublesome for 
orbitals with higher principal quantum number. Therefore in [18] we give useful 
relation for reducing the second derivative of S ~ to the first one. 

The Rydberg orbitals can be placed at the nuclear centres or in the "midpoint" 
of the molecule [7,8]. The latter location has computational advantages even in 
semiempirical methods. Thus, Rydberg orbitals are ghost orbitals (GO) centred 
on "a tom" with nuclear charge equal to zero and atoms have a "normal" basis 
set. Inclusion of these GO's in NDO scheme has been proposed in our earlier 
papers [20-22]. In this case resonance integrals can be also calculated from the 
respective equations of the present paper and, for example [3 '~ integrals between 
hydrogen atom (one s orbital) and Rydberg ghost orbitals can be calculated 
from Eq. (23). 13 ~' integrals can be obtained from Eq. (22) when It for RO forms 
a square matrix, otherwise from Eq. (25), putting in all these formulas I~H = 0. 

4. D i s c u s s i o n  and  Tes t  Calcu lat ions  

Theoretical formulas for resonance integrals in NDO-like methods presented 
here can be used as a basis for the elaboration of an approximate method which 
takes into consideration not only valence shell orbitals, but also Rydberg and/or  
inner ones. Such work has been finished and the results will be published 
elsewhere. Inclusion of inner and/or  Rydberg orbitals is relatively simple, but 
requires modification of approximation in two electron parts of the Hamiltonian 
[23]. 

In the previous CNDO/ INDO calculations [13-16] the resonance integrals were 
approximated by formula /3q = klk2(I i+Is)Si  s where Ix and ky are ionization 
energies and constant parameters, respectively. The kl parameter was put equal 
to about 0.4 for valence-valence interaction and about 0.04 otherwise (i.e. for 
valence-Rydberg and Rydberg-Rydberg overlap). Additionally, k2 was set equal 
to 1.0 except 7r-~r interaction where the value of --0.6 was adopted. Numerical 
comparison of these results with our formulas (which do not contain any adjust- 
able parameters) shows qualitative agreement only. The closer analysis indicates 
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that our/3 values between valence-Rydberg (Rydberg-Rydberg) and valence- 
valence orbitals are smaller (20-80%) and greater (about 30%) than those of 
CNDO/INDO,  respectively, in the tested C-C and H-H bond cases. 

We also noted another difference. Namely k2 artd especially kl are strongly f 
and R dependent. On the other hand, it is known, that the energy of the Rydberg 
states are rather strongly dependent on the choice of Rydberg orbital exponent 
[24], thus optimization on ~ via CNDO/INDO type relation for/3 integrals may 
be equivocal, because both the k parameter and overlap integral are f dependent. 
In this context presented formulas should be more useful. 

Table l .  Calculated vertical transition energies (in eV) for hydrogen molecule 

Main % Rydberg Ab initio Accurate 
State configuration character I N D O L / R  CI [8] [26] I N D O L / V  

IEs ls~2po 95 13.23 12.73 12.81 15.70 
1,~- 1S ~ 2S 100 13.62 13.08 13.42 - -  
3E+~ lS ~ 2ptr 94 10.90 9.97 10.65 12.99 
3]~+ ls  ~ 2s 99 13.02 12.03 12.56 - -  

Table 2. Experimental (Exp.) and calculated vertical transition energies (in eV) for water molecule 

Main % Rydberg Ab initio 
State configuration character I N D O L / R  [7] CI[27] Exp. ~ I N D O L / V  

1A1 o-~3sal 93 9.44 9.80 9.82 9.73 11.24 
1A1 n~3pbl 88 10.22 10.32 10.16 10.17 17.49 
1A1 o-~3pal 94 12.69 11.53 12.08 12.10 30.31 
3A 1 o-~3saa 80 8.20 9.01 9.44 9.35 9.44 
3A 1 n ~ 3p bl 77 9.73 9.65 9.74 9.81 14.84 
3A1 o'~3pal 95 11.89 - -  11.77 11.80 26.59 

IA2 n ~ 3p b2 77 8.96 9.20 9.46 9.20 9.73 
1A 2 mixed V / R  38 10.25 . . . .  
3A 2 n ~ 3p b2 62 8.90 9.04 9.34 9.10 8.93 
3A 2 mixed V / R  37 9.60 . . . .  

1B2 o'-~,3pb2 99 11.58 11.21 11.47 11.40 13.64 
1B 2 o- ~ 3p b2 74 12.19 - -  - -  - -  14.78 
3B2 o'~3pb2 74 10.45 10.99 11.11 11.10 11.49 
3B 2 O" ~ 3p b2 64 12.14 - -  - -  - -  13.23 

1B1 n~3sal 80 6.65 7.30 7.61 7.49 7.11 
1B1 mixed V / R  56 8.77 . . . .  
1BI n ~ 3p as 59 9.97 9.90 10.06 10.00 - -  
aB1 o'-~3pbl 95 12.75 11.72 11.92 11.90 - -  
3B1 n~3sal 82 6.23 6.90 7.26 7.14 5.87 
3B 1 mixed V / R  40 7.63 . . . .  
3B1 n~3pal 85 9.51 9.84 9.99 9.93 - -  
3B 1 o-~3pbl 95 12.67 11.68 11.87 11.90 - -  

Cited according to ref. [27]. 
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A s  an i l lus t ra t ion  of the  app l i ca t ion  of the  re la t ions  de r ived  here ,  we ca lcu la ted  
ver t ical  t rans i t ion  energ ies  of h y d r o g e n  (Table  1) and  wa te r  (Table  2) molecules ,  
using mod i f i ed  I N D O  CI  m e t h o d  [25] in the  va lence  e l ec t ron  a p p r o x i m a t i o n  
( I N D O L / V ) ,  as well  as inc luding  R y d b e r g  orb i ta l s  ( I N D O L / R ) .  T h e  all one -  
cen t re  in tegra ls  involving R y d b e r g  orb i ta l s  were  ca lcu la ted  analyt ica l ly ,  using 
Sla ter  e x p o n e n t s  for  oxygen  2s, 2p, 3s and  3p orb i ta l s ,  and  ~1~ = 1.2, ~:2~ = ~2p = 0.6 
values  for  h y d r o g e n  i s ,  2s and  2p orbi ta ls .  

I t  should  be  no ted  tha t  qui te  good  a g r e e m e n t  with ab initio calcula t ions  as well  
as wi th  the  e x p e r i m e n t a l  resul ts  exists.  The  resul ts  of ou r  ca lcula t ions  show that  
inclusion of R y d b e r g  orb i ta l s  d is t inct ly  imp rove  i n t e rp re t a t i on  of e lec t ron ic  
spect ra ,  espec ia l ly  in the  h igh -ene rgy  region.  

The  subsequen t  e x a m p l e s  of the  e lec t ron ic  spec t ra  ca lcula t ions  involving R y d b e r g  
s ta tes  of varous  molecu les  using I N D O L / R  m e t h o d  will be  pub l i shed  [28]. 
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